GCE: 502, Linear Algebra August 2017

No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let K be \mathbb{R} or \mathbb{C} and $a_0, ..., a_{n-1}$ be in K. Let C be the n by n matrix

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

Show that the characteristic polynomial of C and the minimal polynomial of C are both equal to $P(t) = a_0 + a_1t + \cdots + a_{n-1}t^{n-1} + t^n$.

Exercise 2:

Let A and B be two invertible n by n matrices. Let M be the matrix

$$M = \left(\begin{array}{cc} A & B \\ B^{-1} & A^{-1} \end{array}\right).$$

Assume that M has rank n. Show that A and B commute.

Exercise 3:

Let A be an n by n invertible matrix with entries in K. Suppose that u and v are two vectors in K^n such that $1 + v^T A^{-1} u \neq 0$. Show that $A + uv^T$ is invertible.

Hint: It suffices to prove that the inverse of $A + uv^T$ is

$$A^{-1} - mA^{-1}uv^TA^{-1}$$

where m is an adequate scalar.

Exercise 4:

Let $A = (a_{ij})$ be a symmetric n by n matrix with real entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of A. Show that

$$\sum_{1 \le i,j \le n} a_{ij}^2 = \sum_{i=1}^n \lambda_i^2$$